2021
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
-
Geospatial Data Repository (GDR) Dépôt de données géospatiales (DDG)
-
The Whitehorse enhanced meteorological site is located at Erik Nielsen Whitehorse International Airport (CYXY, 60°43N, 135°04W). This scientific observation site aims to provide a better understanding of the region’s weather conditions to help improve local weather forecasts across the Canadian Arctic and sub-Arctic. For instance, new radar technology is being tested at this site to assess its suitability for detecting and analyzing this region’s weather systems. A companion site in Iqaluit NU (CYFB, 63°45N, 68°33W), in the eastern Canadian Arctic, has also been established. It is important to note that Iqaluit is located above the tree line, while Whitehorse is below, resulting in a significantly more humid atmosphere at Whitehorse suggesting different weather monitoring requirements. The Whitehorse site includes an X-band radar, a Doppler lidar, ceilometers, radiation flux and precipitation sensors, and others. Data collection for a subset of instruments at Whitehorse began in January 2018.
-
Habitat and ecosystem data used to conduct a baseline survey of coastal habitat in Lake Huron, Georgian Bay, and St. Marys River are included in this dataset. The Lake Huron Survey methodology consists of four general steps; 1) delineating the coastal ecosystem into coastal units based on water flow, ecology, and geology; 2) selecting key habitat types including wetlands, uplands (natural and anthropogenic), tributaries, and inland lakes and ponds, and the measures to assess each habitat type and the entire coastal ecosystem; 3) conducting a spatial analysis and summarizing results; and 4) sharing results.
-
Habitat and ecosystem data used to conduct a baseline survey of coastal habitat in Lake Ontario, Niagara River and the St. Lawrence River (up to the Quebec border) are included in this dataset. The Lake Ontario Survey methodology consists of four general steps; 1) delineating the coastal ecosystem into coastal units based on water flow, ecology, and geology; 2) selecting key habitat types including wetlands, uplands (natural and anthropogenic), tributaries, and inland lakes and ponds, and the measures to assess each habitat type and the entire coastal ecosystem; 3) conducting a spatial analysis and summarizing results; and 4) sharing results.
-
This dataset displays the Canadian geographic ranges of the priority species identified under the Pan-Canadian Approach for Transforming Species at Risk Conservation in Canada (“Pan-Canadian Approach”). These species include Barren-ground Caribou (including the Dolphin and Union population); Greater Sage-grouse; Peary Caribou; Wood Bison; Caribou, Boreal population (“Boreal Caribou”); and Woodland Caribou, Southern Mountain population (“Southern Mountain Caribou”). The priority species were chosen following a number of criteria and considerations in collaboration with federal, provincial, and territorial partners. These include, but were not limited to, the species' ecological role on a regional or national scale, their conservation status and achievability of conservation outcomes, their social and cultural value (particularly to Indigenous peoples), and the leadership/partnership opportunities that they present. Delivering conservation outcomes for targeted priority species can have significant co-benefits for other species at risk, and wildlife in general. For more information on the Pan-Canadian Approach and the priority species, see https://www.canada.ca/en/services/environment/wildlife-plants-species/species-risk/pan-canadian-approach.html. This dataset includes: 1) the range for the Boreal Caribou (see https://species-registry.canada.ca/index-en.html#/consultations/2253); 2) the local populations for the Southern Mountain Caribou (see https://species-registry.canada.ca/index-en.html#/consultations/1309); 3) the range for the Greater Sage-grouse (see https://species-registry.canada.ca/index-en.html#/consultations/1458); 4) local populations for the Peary Caribou (see https://species-registry.canada.ca/index-en.html#/consultations/3657); 5) range for the Barren-ground Caribou (see https://www.maps.geomatics.gov.nt.ca/Html5Viewer/index.html?viewer=NWT_SHV English only); 6) range for the Barren-ground Caribou, Dolphin and Union population (https://www.maps.geomatics.gov.nt.ca/Html5Viewer/index.html?viewer=NWT_SHV English only); 7) range for the Wood Bison (see https://species-registry.canada.ca/index-en.html#/consultations/2914).
-
In 2015 as part of the Canadian Artic Weather Science (CAWS) project, Environment and Climate Change Canada (ECCC) established an enhanced monitoring reference site at Iqaluit, Nunavut (CYFB, 63°45N, 68°33W) in the eastern Canadian Arctic. The site was strategically selected at the loci of synoptic storm tracks and primary transportation corridors. CYFB is also a major aviation hub for the North. It is an operational upper air site with an existing office building and instrument test facility infrastructure with a co-located Double Fence International Reference for solid precipitation measurements. The site was to provide automated and continuous observations of altitude-resolved winds, clouds and aerosols, visibility, radiation fluxes, turbulence, and precipitation. The benefit of integrated measurement systems at the Iqaluit supersite are being investigated to: 1) Recommend the optimal cost-effective observing system for the Canadian Arctic that can complement existing radiosonde observations 2) Provide enhanced meteorological observations during the World Meteorological Organization’s Year of Polar Prediction (WMO YOPP). Instrumentation at Iqaluit includes a Ka-band radar, water vapour lidars (both in-house and commercial versions), multiple Doppler lidars, ceilometers, radiation flux and precipitation sensors, and others. Data collection for a subset of the instruments at Iqaluit began in March 2016.
-
Precipitation measurements in the Environment and Climate Change Canada (ECCC) surface network are a necessary component for monitoring weather and climate and are required for flood and water resource forecasting, numerical weather prediction and many other applications that impact the health and safety of Canadians. Beginning in the late 1990s, the ECCC surface network began a transition from manual to automated precipitation measurements. Advantages to increased automation include enhanced capabilities for monitoring in remote locations and higher observation frequency at lower cost. However, transition to automated precipitation gauges has resulted in new challenges to data quality, accuracy, and homogenization. Automated weighing precipitation gauges used in the ECCC operational network, because of their physical profile, tend to measure less precipitation falling as snow because lighter particles (snow) are deflected away from the collector by the wind flow around the gauge orifice. This phenomenon of wind-induced systematic bias is well documented in the literature. The observation requires an adjustment depending on gauge and shield configuration, precipitation phase, temperature, and wind speed. Hourly precipitation, wind speed, and temperature for 397 ECCC automated surface weather stations were retrieved from the ECCC national archive. Climate Research Division (CRD) selected this sub-set of stations because they are critical to the continuity of various climate analysis. The observation period varies by station with the earliest data series beginning in 2001 (with most beginning in 2004). The precipitation data was quality controlled using established techniques to identify and flag outliers, remove spurious observations, and correct for previously identified filtering errors. The resulting hourly precipitation data was adjusted for wind bias using the WMO Solid Precipitation Inter-Comparison Experiment (SPICE) Universal Transfer Function (UTF) equation. A full description of this data set, including the station locations, data format, methodology, and references are included in the repository.
-
The National Pollutant Release Inventory (NPRI) is Canada's public inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. This file is a geodatabase (GDB) that shows the locations of all facilities that reported to the NPRI in the current reporting year. The data are also available in a virtual globe format : https://open.canada.ca/data/en/dataset/d9be6bec-47e5-4835-8d01-d2875a8d67ff Please consult the following resources to enhance your analysis: - Guide on using and Interpreting NPRI Data: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/using-interpreting-data.html - Access additional data from the NPRI, including datasets and mapping products: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/exploredata.html
-
Ambient air is sampled daily, with a nominal 24-hour sampling period, on a Canadian Air and Precipitation Monitoring Network (CAPMoN) sequential sample head located 10 meters above ground. Air is drawn through a three-stage filter pack consisting of 47-millimeter Teflon, nylon and cellulose filters. Particulate Cl-, NO3-, SO4=, NH4+, Na+, K+, Ca++ and Mg++ are collected on the Teflon filter, gaseous HNO3 and a small amount of SO2 are collected by the nylon filter, and gaseous SO2 and residual HNO3 are collected by the K2CO3-impregnated cellulose filter. Filter loadings determined by laboratory extraction and analysis are blank corrected and divided by calibrated sample air volume to get atmospheric concentration in micrograms per cubic meter at International Union of Pure and Applied Chemistry (IUPAC) standard temperature and pressure. The sampling and analysis methodology is described in Sirois and Fricke, 1992.
-
The datasets and maps are associated with a research study. Annual total (dry + wet) deposition fluxes of nitrogen (nitric acid, nitrate and ammonium) and sulfur (sulfur dioxide and sulfate) were determined at 15 Canadian Air and Precipitation Monitoring Network (CAPMoN) sites from 2000 to 2018. The sites are located in the west coast, prairies, central and southern Ontario and Quebec, eastern Quebec, and Atlantic Canada. Dry deposition fluxes were estimated using the ambient air concentrations and dry deposition velocities of nitrogen and sulfur compounds. Monitored ambient air concentrations are available from CAPMoN’s Air Filter Pack data, and dry deposition velocities were estimated using ECCC’s Global Environmental Multiscale (GEM) model and Moderate Resolution Imaging Spectroradiometer (MODIS) land use data and leaf area index. Monitored wet deposition fluxes were determined using CAPMoN’s Precipitation Chemistry data and precipitation depth. To evaluate whether acidic deposition exceeded critical loads and assess potential ecosystem effects, aquatic and terrestrial critical loads of acidity were estimated using the Steady-State Water Chemistry and Simple Mass Balance models, respectively, and geospatial tools were used to extract the critical loads data surrounding the CAPMoN sites.