From 1 - 10 / 63
  • Categories  

    The Global Deterministic Prediction System (GDPS) is a coupled atmosphere (GEM), ocean and sea ice (NEMO-CICE) deterministic numerical weather prediction model. Forecasts are carried out twice a day for 10 days lead time. The geographical coverage is global on a native Yin-Yang grid at 15 km horizontal resolution. Data is available for 33 vertical levels and interpolated on a global latitude-longitude uniform grid with 0.2 degree horizontal resolution. Variables availability in number and time frequency is a function of forecast lead time.

  • Categories  

    The Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) carries out physics and chemistry calculations, including emissions from active wildfires, to arrive at deterministic predictions of chemical species concentration of interest to air quality, such as fine particulate matter PM2.5 (2.5 micrometers in diameter or less). Geographical coverage is Canada and the United States. Data is available at a horizontal resolution of 10 km. While the system encompasses more than 80 vertical levels, data is available only for the surface level. The products are presented as historical, annual or monthly, averages which highlight long-term trends in cumulative effects on the environment.

  • Categories  

    Climate observations are derived from two sources of data. The first are Daily Climate Stations producing one or two observations per day of temperature, precipitation. The second are hourly stations that typically produce more weather elements e.g. wind or snow on ground.

  • Categories  

    Daily climate observations are derived from two sources of data. The first are Daily Climate Stations producing one or two observations per day of temperature, precipitation. The second are hourly stations that typically produce more weather elements e.g. wind or snow on ground. Only a subset of the total stations is shown due to size limitations. The criteria for station selection are listed as below. The priorities for inclusion are as follows: (1) Station is currently operational, (2) Stations with long periods of record, (3) Stations that are co-located with the categories above and supplement the period of record.

  • Categories  

    A station is a site on a river or lake where water quantity (water level and flow) are collected and recorded.

  • Categories  

    The Canadian Seasonal to Inter-annual Prediction System (CanSIPS) carries out physics calculations to arrive at probabilistic predictions of atmospheric elements from the beginning of a month out to up to 12 months into the future, resulting in seasonal forecasts. Atmospheric elements include temperature, precipitation, wind speed and direction and others. This product contains raw numerical results of these calculations. Geographical coverage is global. Data is available on a grid at a horizontal resolution of 2.5 degrees and 1 degree and for a few selected vertical levels. In addition, forecast probabilities for below, near, and above normal temperature and precipitation are available at both resolutions. Predictions and corresponding hindcast are made available monthly.

  • Categories  

    MetNotes are a geo- and time-referenced, free form polygon product issued by MSC that complement today's location-based dissemination systems. The concise text of a MetNote (similar to a Tweet) is consistent with communication today where people are seeking information at a glance. Meteorologists will issue a MetNote to add contextual and/or impact information to complement the public forecast that is valid over a specific area, for a specific time range.

  • Categories  

    Statistical post-processing of weather and environmental forecasts issued by numerical models, including the Global Deterministic Prediction System (GDPS), reduces systematic bias and error variance of raw numerical forecasts. This is achieved by establishing an optimal relationship between observations recorded at stations and co-located numerical model outputs. The Updatable Model Output Statistics (UMOS) system at Environment Canada carries out this task. The statistical relationships are built using the Model Output Statistics (MOS) method and a multiple linear regression (MLR) technic. The weather and environmental variable being statistically post-processed by UMOS consists of air temperature at approximately 1.5 meters above ground. The absence of a statistically post-processed forecast can be caused by a missing statistical model due to insufficient observation data quality or quantity. Geographical coverage includes weather stations across Canada. Statistically post-processed forecasts are available at the same frequency of emission as the numerical model producing the raw forecasts and at 3-hourly lead times up to 144 hours (6 days) for the GDPS.

  • Categories  

    The Air Quality Health Index (AQHI) is a scale designed to help quantify the quality of the air in a certain region on a scale from 1 to 10. When the amount of air pollution is very high, the number is reported as 10+. It also includes a category that describes the health risk associated with the index reading (e.g. Low, Moderate, High, or Very High Health Risk). The AQHI is calculated based on the relative risks of a combination of common air pollutants that are known to harm human health, including ground-level ozone, particulate matter, and nitrogen dioxide. The AQHI formulation captures only the short term or acute health risk (exposure of hour or days at a maximum). The formulation of the AQHI may change over time to reflect new understanding associated with air pollution health effects. The AQHI is calculated from data observed in real time, without being verified (quality control).

  • Categories  

    Climate Normals and Averages are used to summarize or describe the average climatic conditions of a particular location. At the completion of each decade, Environment and Climate Change Canada updates its Climate Normals for as many locations and as many climatic characteristics as possible. The Climate Normals, Averages and Extremes offered here are based on Canadian climate stations with at least 15 years of data between 1981 to 2010.